TEST REPORT ON

CENTRAL STATES MANUFACTURING, INC.'S
R-LOC PANELS
(26 GA., 80 KSI, 36" WIDE)
AT 7' 6" & 5' 0" PANEL SPANS
IN ACCORDANCE WITH
AISI S907-08 & AC43

TESTED FOR:

Central States Manufacturing, Inc. 302 Jane Place Lowell, AR 72745 Telephone: (800) 356-2733 Fax: (800) 356-2971

TESTED BY:

ENCON® Technology, Inc. 1216 North Lansing Avenue, Suite C Tulsa, OK 74106 Telephone: (918) 492-5992 FAX: (866) 366-1543

TEST WITNESSED BY: Bala Sockalingam, Ph.D., P.E.

TESTING DATE: March 12, 2015 REPORTING DATE: March 19, 2015

ENCON® Project C2006-1

TABLE OF CONTENTS

SECTION I	TEST	SUMMARY	Page Number
	1.1	Summary	1
	1.2	Panel System Description	1
	1.3	Test Results	1-2
	1.4	Panel System Details	3
SECTION II	DESC	CRIPTION OF TEST	•
	2.1	Description of Test	4-5
	2.2	Calculations	5-6
SECTION III	TEST	RESULTS	
	3.1	Specimen Identification	7
	3.2.1	Test #1: R-Loc panels at spans of 7' 6"	8-9
	3.2.2	Test #2: R-Loc panels at spans of 7' 6"	10-11
	3.2.3	Test #3: R-Loc panels at spans of 5' 0"	12-13
	3.3	Bare Frame Strength	14-15
SECTION IV	TEST	PHOTOGRAPHS	
	4.1	Test Photographs	16-19
SECTION V	APPE	ENDIX	
	5.1	Test Drawings	20-24
	5.2	Tension Tests Report	25
	5.3	Test Conditions	26-27

TEST SUMMARY

1.1 SUMMARY

Tests were conducted on Central States Manufacturing's 26 ga., 80 ksi R-Loc panels at ENCON® Technology, Inc. Test Facility, Tulsa, Oklahoma. The purpose of the tests was to determine the diaphragm shear strength and shear stiffness of R-Loc panel construction under simulated loading conditions. These tests meet the provisions of AISI S907-08 "Cantilever Test Method for Cold-Formed Steel Diaphragms" and AC43 "Acceptance Criteria for Steel Roof Deck and Floor Systems".

These tests were conducted for two different panel spans. The tests are listed below according to date tested.

Test #1 & 2: R-Loc panels at two spans of 7' 6". The panel to structural fasteners spacing was 1' 0" at the top, interior and bottom supports. Tested on March 12, 2015.

Test #3: R-Loc panels at three spans of 5' 0". The panel to structural fasteners spacing was 1' 0" at the top, interior and bottom supports. Tested on March 12, 2015.

The panels were fastened to 16 ga. supports. The sidelap fastener spacing was 24" o.c. for all tests. The above-defined tests were witnessed by Bala Sockalingam, Ph.D., P.E. of ENCON Technology, Inc.

1.2 PANEL SYSTEM DESCRIPTION

R-Loc panels were 26 ga., 1.25" high and 36" wide, 80 ksi through fastened panels. Each panel consisted of 4 ribs spaced at 12" o.c. as shown on Page 3.

The panels were fastened to nominal 16 ga. cee supports with #12-14 x 1.25" long hex head self-drilling screws with washers (Sealtite Building Fasteners). Each panel spanned continuously over two equal spans of 7' 6" or three equal spans of 5' 0". The sidelap fasteners were 1/4"-14 x 7/8" long self-drilling lap screws (Sealtite Building Fasteners) and were spaced at 24" o.c. for all tests. The two sides of the panel assembly were fastened to 16 ga. side angles with panel fastener spaced at 24" o.c. The side angles were fastened to the side posts of the interior frame.

1.3 TEST RESULTS

Load was applied incrementally and deflections of the test construction were recorded for 'no load' condition and at each load increment. The failure mode in Test #1 and #2 was panel buckling. The average ultimate shear strength from the two test constructions with 7' 6" panel span was 338.4 lb/ft and average shear stiffness was 22686 lb/in. The failure mode in Test #3 was tilting and bearing failure of sidelap fastener. The ultimate shear strength from the test construction with 5' 0" panel span was 400.0 lb/ft and shear stiffness was 22857 lb/in. The ultimate shear load and shear stiffness for each test are shown on Table 1.

TEST SUMMARY

Table 1. Shear Load Test Results

Test	a	b	Panel	Maximum	$0.4P_{\rm u}$	Net	Shear	Ultimate
No.	(ft)	(ft)	Span	Shear Load	(lb)	Deflection	Stiffness	Shear
				P _u (lb)		$\Delta_{\rm n}$ (in)	G' (Lb/in)	(lb/ft)
1	15	15	7' 6"	5250	2100.0	0.093	22581	350.0
2	15	15	7' 6"	4900	1960.0	0.086	22791	326.7
3	15	15	5' 0"	6000	2400.0	0.105	22857	400.0

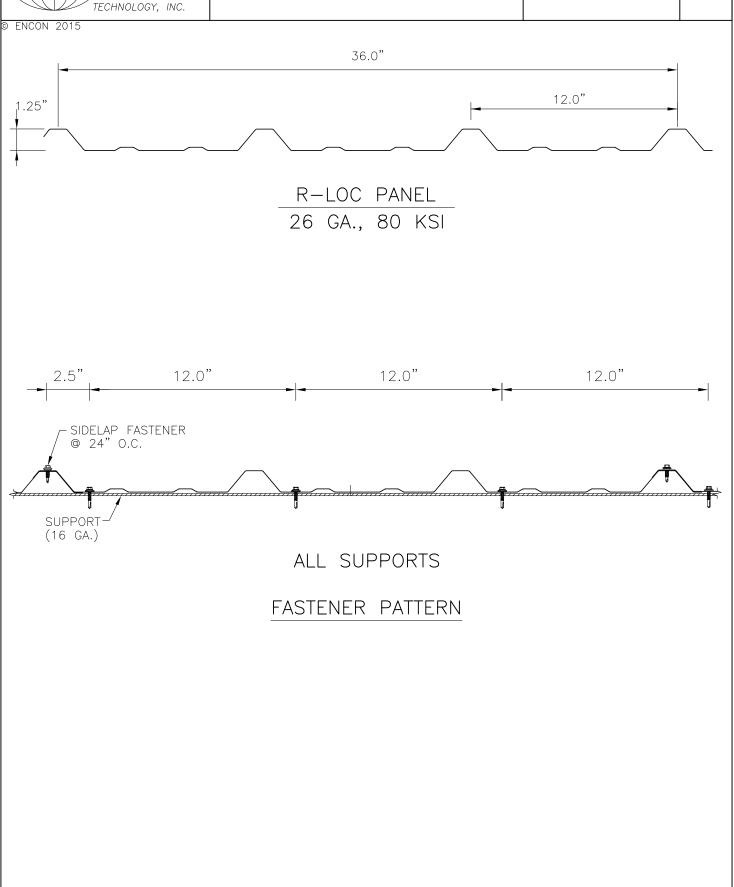
Notes:

 P_u = Maximum applied load in the cantilever beam test (lb)

 $P = 0.4P_u$ in the cantilever beam test (lb)

G' = Shear stiffness of the diaphragm as determined from test measurements

a = Length of diaphragm test frame = 15 ft b = Depth of diaphragm test frame = 15 ft


 Δ_n = Net shear deflection of diaphragm (in) at 0.4P_u load.

CENTRAL STATES R-LOC DIAPHRAGM TEST SUMMARY

AISI S907-08

3/27

DESCRIPTION OF TEST

2.1 DESCRIPTION OF TEST

OBJECTIVES

Tests were conducted to determine shear strength and shear stiffness of the panels under simulated loading conditions. The test method consisted of the following:

- 1. assembling the test panel on an interior test frame to form a typical roof or wall construction:
- 2. loading the test frame incrementally; and
- 3. observing, measuring, and recording the deflections, deformations, and nature of any failures of principal or critical elements of the test construction.

The increments of load application were chosen such that a sufficient number of readings were obtained to determine the load deformation curve of the system.

TEST SETUP

The test setup consisted of an exterior reaction truss and interior panel support frame as shown in the applicable drawings in the appendix. The L-shaped reaction truss was constructed of two built-up tube sections with cross-braced angle sections to form a truss. The interior frame consisted of two side posts and panel supports. The panel supports were constructed of cold-formed cee or zee sections having equal or lower strength and stiffness than that intended for use in the typical constructions. The end and interior supports were fastened to the side posts with pinned connections.

Both the truss and frame lay in the same horizontal plane. The reaction frame was supported by short columns, which rested on the laboratory floor. Two corners of the interior frame were connected to the exterior frame with hinge and roller supports. The side opposite to these corners was held up by columns with roller bases.

LOADING DEVICE

Load was applied using a 25 kip capacity hydraulic ram and manual pump. The load was monitored with a calibrated 25 kip capacity load cell and associated instrumentation. The accuracy of the load cell was estimated to be \pm 0.01 kips. The hydraulic ram was attached to the reaction truss and the load cell was attached to the interior frame. The load was applied parallel to and in close proximity to one of the points of contact between the diaphragm web and frame.

DEFLECTION MEASUREMENT

Deflection measurements were taken by means of dial indicators calibrated to 1/1000 of an inch. Deflections were measured at locations as shown on the drawings in the appendix. The deflection locations are based on AISI S907-08.

DESCRIPTION OF TEST

DIAPHRAGM SIZE

The overall dimension of each construction was in excess of 15' x 15' for all tests. The panels covered two spans of 7' 6" or three spans of 5' 0". The construction width contained five full panels. The panels were fastened to end and interior supports with self-drilling screws. The panels were also fastened to the side posts of the interior frame. The details of the methods of construction are depicted in the enclosed test drawings. All the material used in the construction represented a typical construction.

NUMBER OF TESTS

Two tests were conducted for constructions with 7' 6" panel span and one test for construction with 5' 0" panel span.

TEST PROCEDURE

The interior frame was loaded to determine its bare frame stiffness. The bare frame stiffness for support spacing at 5' 0" was insignificant, deflecting more than 2" under 42-lb load.

The loading procedure on the completed diaphragm construction consisted of loads applied in increments. The diaphragm was loaded to 5% of the anticipated ultimate load and unloaded. Deflection measurements were recorded at 'no load' conditions. The diaphragm was loaded in equal load increments. At approximately 25% and 50% of estimated maximum load, the load was lowered to zero load and the recovery of the diaphragm was recorded after 5 minutes. Deflection measurements were recorded at every load increment.

TEST DURATION

The test was stopped when the test specimen was unable to carry additional load or visual failure of one or more components of the diaphragm occurred.

2.2 CALCULATIONS

The ultimate shear strength S_u (lb/ft) of a given construction is where

$$S_u = \frac{P_u}{b}$$

 $P_u = Maximum applied load in the cantilever beam test (lb),$

b = Depth of diaphragm test frame (ft).

The net shear deflections (Δ) at any load level in the cantilever beam test is

$$\Delta = \Delta_3 - \left[\Delta_1 + \frac{a}{b} (\Delta_2 + \Delta_4) \right]$$

where $\Delta_1, \Delta_2, \Delta_3$ and Δ_4 are measured deformations with appropriate signs at locations shown in

DESCRIPTION OF TEST

the test drawings.

The apparent shear stiffness G' (lb/in) of a given construction is

$$G' = \frac{P}{\Delta_n} \left(\frac{a}{b} \right)$$

where

 $P = 0.4P_u$ in the cantilever beam test (lb),

a = Length of diaphragm test frame (ft).

 Δ_n = Net shear deflection of diaphragm (in) at 0.4P_u load.

3.1 SPECIMEN IDENTIFICATION

Panel Manufacturer: Central States Manufacturing

Model Type: R-Loc panel

Dimensions: 1.25" high, 36" wide coverage

Panel Thickness (Ga.): 26

Base Metal Thickness: 0.017" (average)

Panel Yield Stress: Nom. 80 ksi (96.2 ksi tested average)

Elongation in 2": 6 %

Panel Fasteners: #12-14 x 1.25" long hex head self-drilling screws with washer

(Steelbinder Maxx S-D Sealtite Building Fasteners)

Sidelap Fasteners: \(\frac{1}{4}\)"-14 x 7/8" long hex washer head self-drilling screws with bond

seal washer (Steelbinder Maxx S-D Sealtite Building Fasteners)

Supports: Cee 8" x 2.5" x 16 ga.

Support Thickness: 0.060" (Coated thickness)

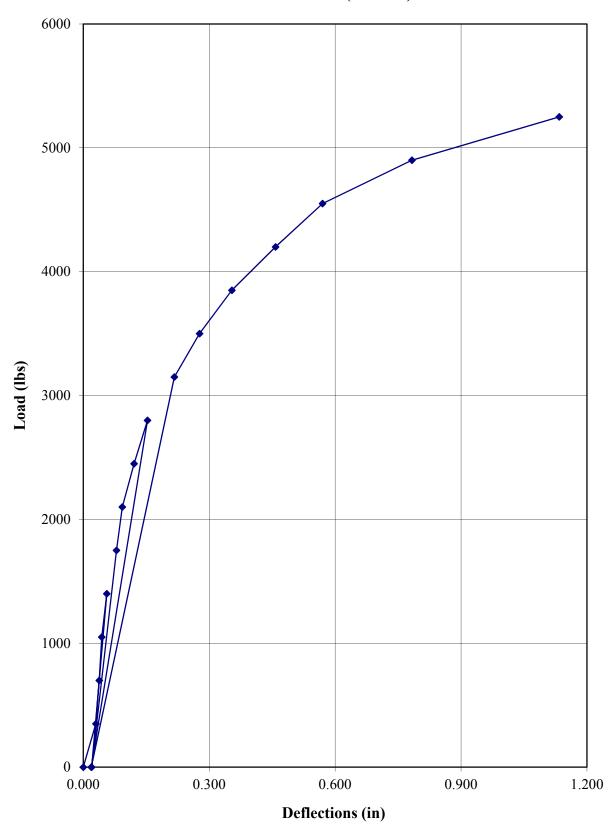
Note: All the test materials were supplied by Central States Manufacturing and were not sampled by ENCON.

3.2.1 TEST #1: R-LOC PANEL AT 7' 6" SPAN

Date: 3.12.15
Panel Type: R-Loc
Gauge: 26 ga.
Thickness: 0.017"
Panel Width: 36"

Support Spacing: 7' 6"-7' 6" (Two spans)
Type of Structural Fastener: #12-14 x 1.25" long SDS

Fastener Spacing at End Supports: 12" o.c.
Fastener Spacing at Intermediate Supports: 12" o.c.
Fastener Spacing along sides: 24" o.c


Type of Sidelap Fastener: 1/4"-14 x 7/8" long Lap SDS

Sidelap Fastener Spacing 24" o.c
a = span length of diaphragm (ft): 15
b = depth of diaphragm (ft): 15

Load		Dial Indicator Reading (in)					
(lb)					Deformation		
	1	2	3	4	Δ (in)		
0	0.000	0.000	0.000	0.000	0.000		
350	0.058	0.001	0.341	0.252	0.030		
700	0.114	0.005	0.440	0.283	0.038		
1050	0.132	-0.020	0.458	0.302	0.044		
1400	0.151	-0.052	0.472	0.317	0.056		
0	-0.012	-0.051	0.178	0.221	0.020		
1750	0.157	-0.070	0.495	0.329	0.079		
2100	0.166	-0.070	0.526	0.337	0.093		
2450	0.173	-0.070	0.570	0.346	0.121		
2800	0.179	-0.067	0.625	0.360	0.153		
0	-0.030	-0.075	0.162	0.248	0.019		
3150	0.168	-0.070	0.676	0.361	0.217		
3500	0.175	-0.070	0.750	0.368	0.277		
3850	0.180	-0.070	0.839	0.375	0.354		
4200	0.187	-0.069	0.961	0.385	0.458		
4550	0.193	-0.070	1.090	0.397	0.570		
4900	0.213	-0.066	1.330	0.400	0.783		
5250	0.262	-0.069	1.730	0.403	1.134		
0	0.030	-0.100	0.618	0.261	0.427		

Failure Mode: Panel buckling
Duration of test: 17 minutes

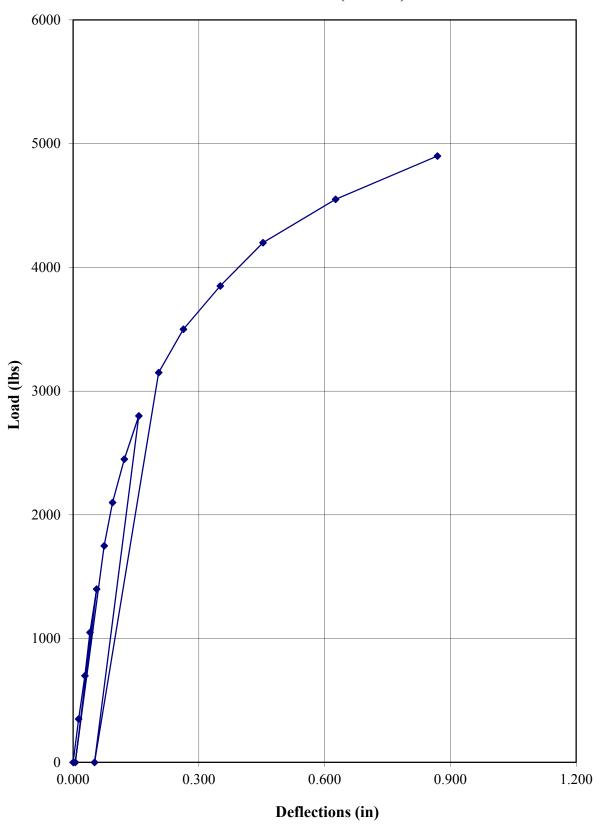
Load vs Deflection (Test #1)

3.2.2 TEST #2: R-LOC PANEL AT 7' 6" SPAN

Date: 3.12.15
Panel Type: R-Loc
Gauge: 26 ga.
Thickness: 0.017"
Panel Width: 36"

Support Spacing: 7' 6"-7' 6" (Two spans)
Type of Structural Fastener: #12-14 x 1.25" long SDS

Fastener Spacing at End Supports: 12" o.c. Fastener Spacing at Intermediate Supports: 12" o.c. Fastener Spacing along sides: 24" o.c


Type of Sidelap Fastener: 1/4"-14 x 7/8" long Lap SDS

Sidelap Fastener Spacing 24" o.c
a = span length of diaphragm (ft): 15
b = depth of diaphragm (ft): 15

Load		Shear				
(lb)						
	1	2	3	4	Δ (in)	
0	0.000	0.000	0.000	0.000	0.000	
350	0.034	-0.009	0.065	0.027	0.013	
700	0.069	-0.012	0.136	0.051	0.028	
1050	0.096	-0.007	0.198	0.069	0.040	
1400	0.129	0.001	0.270	0.084	0.056	
0	0.031	-0.005	0.060	0.029	0.005	
1750	0.155	0.007	0.334	0.098	0.074	
2100	0.168	0.014	0.387	0.111	0.094	
2450	0.182	0.019	0.449	0.126	0.122	
2800	0.194	0.021	0.509	0.137	0.157	
0	0.030	-0.005	0.102	0.026	0.051	
3150	0.197	0.023	0.566	0.142	0.204	
3500	0.203	0.024	0.638	0.148	0.263	
3850	0.212	0.026	0.744	0.155	0.351	
4200	0.219	0.029	0.866	0.165	0.453	
4550	0.225	0.033	1.071	0.187	0.626	
4900	0.235	0.039	1.336	0.193	0.869	
0	0.039	0.011	0.486	0.073	0.363	

Failure Mode: Panel buckling
Duration of test: 16 minutes

Load vs Deflection (Test #2)

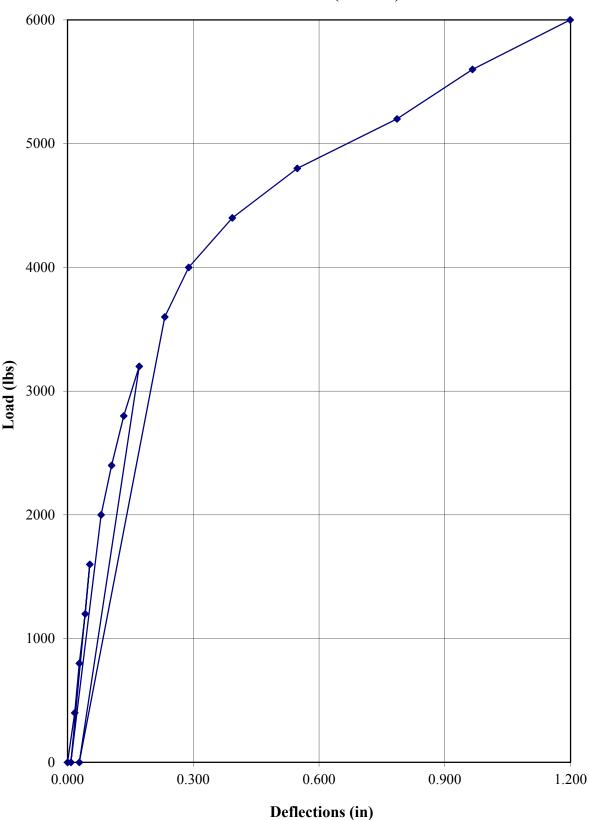
3.2.3 TEST #3: R-LOC PANEL AT 5' 0" SPAN

Date: 3.12.15
Panel Type: R-Loc
Gauge: 26 ga.
Thickness: 0.017"
Panel Width: 36"

Support Spacing: 5' 0" - 5' 0" -5' 0" (Three spans)
Type of Structural Fastener: #12-14 x 1.25" long SDS

Fastener Spacing at End Supports: 12" o.c. Fastener Spacing at Intermediate Supports: 12" o.c. Fastener Spacing along sides: 24" o.c

Type of Sidelap Fastener: 1/4"-14 x 7/8" long Lap SDS


Sidelap Fastener Spacing 24" o.c
a = span length of diaphragm (ft): 15
b = depth of diaphragm (ft): 15

Load		Shear			
(lb)					Deformation
	1	2	3	4	Δ (in)
0	0.000	0.000	0.000	0.000	0.000
400	0.043	-0.002	0.080	0.022	0.017
800	0.104	-0.004	0.173	0.045	0.028
1200	0.136	0.004	0.237	0.055	0.042
1600	0.156	0.014	0.291	0.068	0.053
0	0.022	-0.004	0.025	-0.001	0.008
2000	0.164	0.014	0.336	0.078	0.080
2400	0.170	0.015	0.376	0.086	0.105
2800	0.181	0.017	0.427	0.095	0.134
3200	0.189	0.018	0.482	0.104	0.171
0	0.021	-0.016	0.043	0.010	0.028
3600	0.181	0.020	0.537	0.104	0.232
4000	0.191	0.019	0.610	0.111	0.289
4400	0.201	0.023	0.736	0.119	0.393
4800	0.209	0.028	0.910	0.125	0.548
5200	0.221	0.033	1.170	0.130	0.786
5600	0.236	0.041	1.378	0.135	0.966
6000	0.251	0.052	1.646	0.144	1.199
0	0.058	-0.022	0.943	0.015	0.892

Failure Mode: Sidelap fastener bearing and tilting

Duration of test: 18 minutes

Load vs Deflection (Test #3)

3.3.1 BARE FRAME AT SUPPORT SPANS OF 5' 0"

Test No: Bare Frame Date: 3.12.2015

Support Spacing: 5' 0" - 5' 0" -5' 0" (Three spans)

End Supports C8.0 x 2.5 x 16 ga.
Interior Supports C8.0 x 2.5 x 16 ga.
Additional weight (5) 26 ga. R-Loc panels

a = span length of diaphragm (ft):
b = depth of diaphragm (ft):
15

Load		Dial Indicator Reading (in)						
(lb)								
	1	2	3	4	Δ (in)			
0	0.000	0.000	0.000	0.000	0.000			
38	0.004	0.007	0.496	-0.004	0.489			
41	0.024	0.006	1.007	-0.004	0.981			
42	0.041	-0.002	1.495	-0.004	1.460			
42	0.056	-0.009	2.001	-0.003	1.957			

Load vs Deflection (Bare Frame)

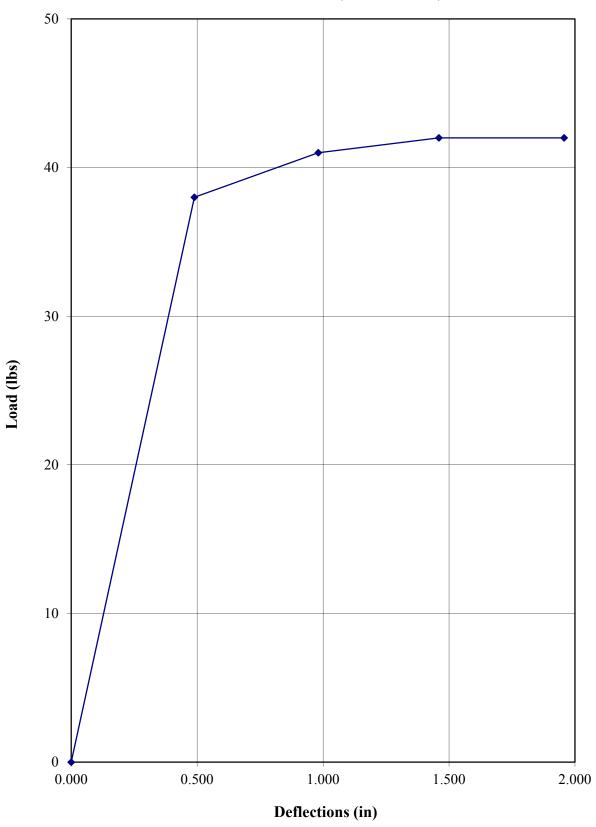


PHOTO 1 View of the panel and sidelap fasteners used in all tests. (DSCN3201)

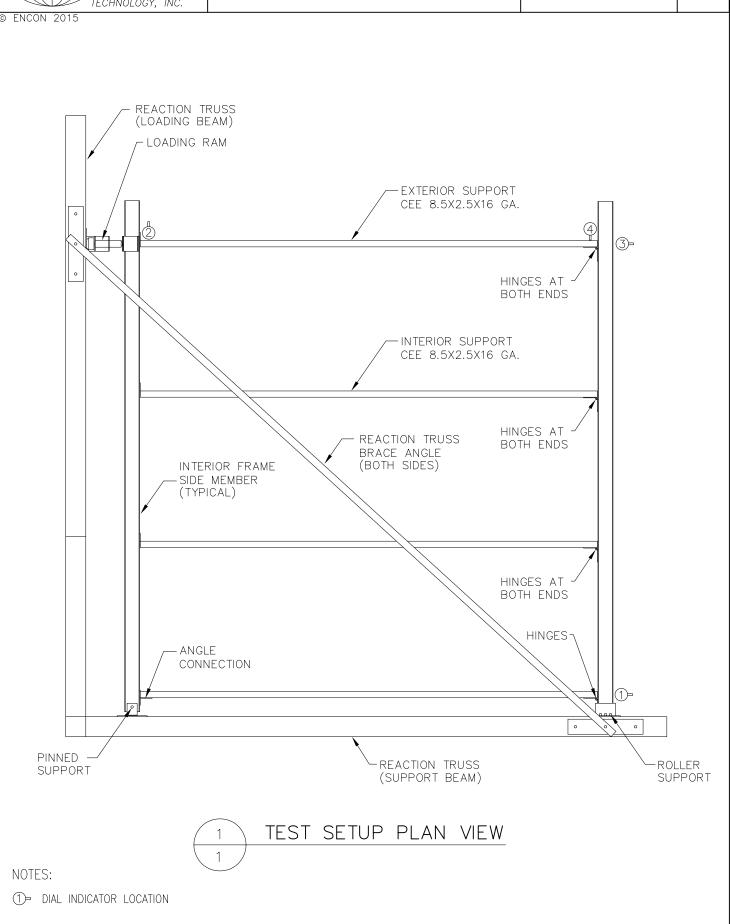
PHOTO 2 Overview of the diaphragm test setup of R-Loc panels. (DSCN3179)

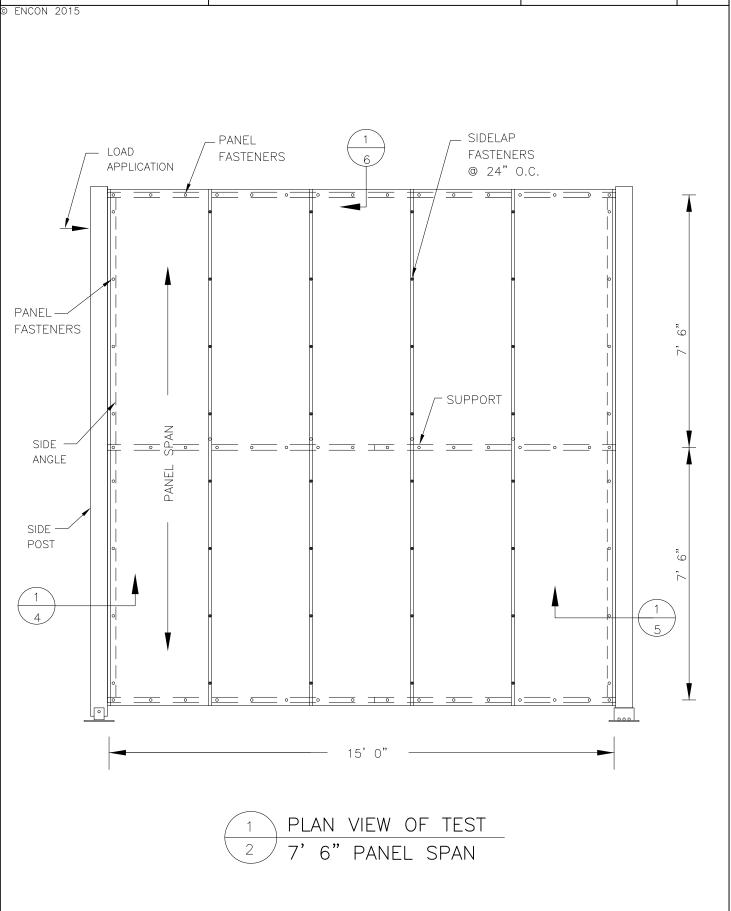
PHOTO 3 View of panel and sidelap fasteners at end and interior supports (Tests #1 & 2). (DSCN3180)

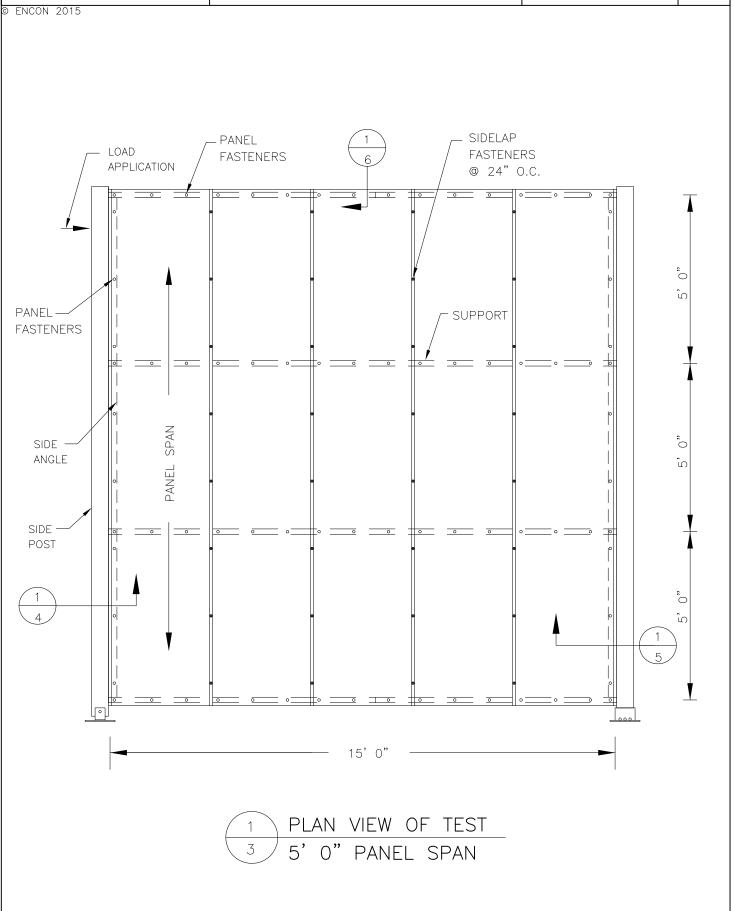
PHOTO 4 View of panel deformation under shear load in Test #1. (DSCN3181)

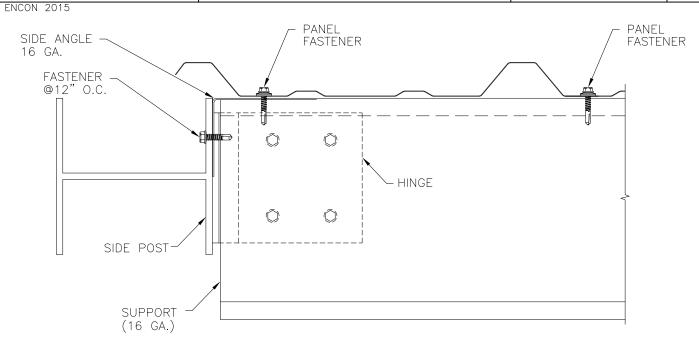
PHOTO 5 View of panel buckling in Test #1. (DSCN3183)

PHOTO 6 View of panel buckling in Test #2. (DSCN3189)

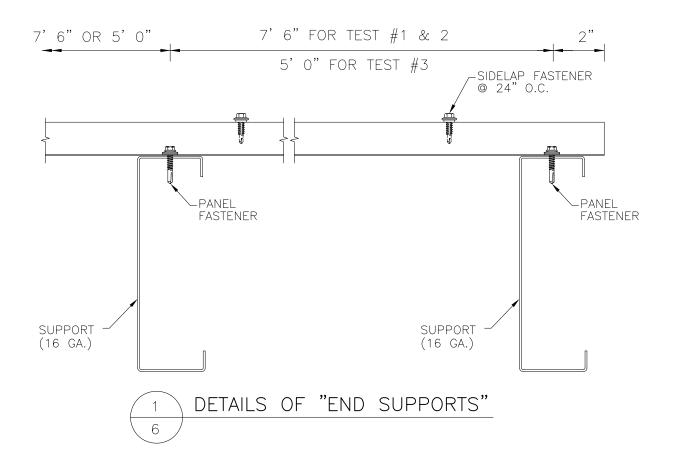

PHOTO 7 View of sidelap and panel fasteners at end and interior supports. (Test #3) (DSCN3193)


PHOTO 8 View of bearing and tilting failure of sidelap fastener in Test #3. (DSCN3199)


CENTRAL STATES R-LOC DIAPHRAGM TEST SETUP






1 DETAILS OF "STARTER EDGE"

1 DETAILS OF "FINISH EDGE"
5

24/27

© ENCON 2015

Element Materials Technology 3100 North Hemlock Circle Broken Arrow, OK 74012-1115 USA

F 918 258 1154 T 800 982 8378 info.brokenarrow@element.com

element.com

P 918 258 6066

Laboratory Report - EAR-Controlled Data

Attn: Bala Sockalingam
ENCON Technology, Inc.
1216 N. Lansing Ave. Suite C
Tulsa, OK 74106 US

Report No: B15030523

Date Reported: 3/18/2015

P.O. No: Verbal

Material: Steel

Description: (3) 26 ga. R-Loc, Material: Steel

Room Temperature Tensile Testing ASTM E8/E8M-13a, Parallel to Length of the Specimen, As Received

Sample ID	Width, Initial, in	Thickness, Initial, in	Tensile Strength, psi	Yield (0.2% Offset), psi	Elongation (4W), %	Location of Fracture
Sample 1	0.498	0.016	100400	97500	6	Inside Middle Half of Gage

Room Temperature Tensile Testing ASTM E8/E8M-13a, Parallel to Length of the Specimen, As Received

Sample ID	Width, Initial, in	Thickness, Initial, in	Tensile Strength, psi	Yield (0.2% Offset), psi	Elongation (4W), %	Location of Fracture
Sample 2	0.498	0.017	97800	95000	7	Inside Middle Half of Gage

Room Temperature Tensile Testing ASTM E8/E8M-13a, Parallel to Length of the Specimen, As Received

Sample ID	Width, Initial, in	Thickness, Initial, in	Tensile Strength, psi	Yield (0.2% Offset), psi	Elongation (4W), %	Location of Fracture
Sample 3	0.498	0.017	98400	96100	6	Inside Middle Half of Gage

This document contains technical data whose export and reexport/ retransfer may be subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

Approved by:

Doug Kooken

Operations Manager, Metals

APPENDIX

5.3 TEST CONDITIONS

A. OWNERSHIP OF ENCON WORK PRODUCT

All test results developed as a part of this work shall be CUSTOMER's property. All samples submitted to ENCON for testing shall become the property of ENCON. CUSTOMER understands that any test program including procedures and test machines incorporated as a part of this work is a result of continuing long-term research and development by ENCON and because of this all ENCON test procedures, test drawings and other intellectual property relating to this work is and shall remain the property of ENCON. Test samples were disposed of shortly after completion of the tests unless other arrangements were agreed to in writing prior to the test.

ENCON will use its normal procedures to retain copies of the information developed as a part of this test for a period of three years from the date the work was done. This material may be routinely destroyed thereafter.

B. ENCON GUARANTEE

ENCON guarantees it used its best effort to accomplish this test work. Work done by ENCON was carefully completed by personnel believed to be competent. ENCON tests were based on what was currently believed to be good engineering practices in use at the time of the test.

The safety factors used are generally accepted as suitable to produce safe results. However, good engineering practices and applicable codes and insurance requirements must be taken into consideration in determining if a test procedure is satisfactory for a specific end use. Applicable specifications, good engineering practices and applicable safety factors may change in the future. CUSTOMER should be alert to these changes.

The information and test results presented by ENCON in this test report are offered in good faith based on information ENCON believes to be reliable. This information is offered as a guide to assist CUSTOMER in CUSTOMER's endeavors and does not contain any warranties as to fitness by ENCON. No REPRESENTATION OF IMPLIED, **INCLUDING** WARRANTIES, **EXPRESS** OR THOSE MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE are made by ENCON, and more specifically, ENCON hereby expressly disclaim such. In no event shall ENCON be liable for ANY CONSEQUENTIAL, INCIDENTAL OR SPECIAL DAMAGES, including, without limitation, labor, transportation, loss of use, loss of profits, harm, personnel injury and damage to property.

If any doubt exists as to the proper means of interpreting or using the test results contained herein, contact ENCON for clarification. CUSTOMER should assure themselves through careful evaluations that test results are suitable for those end uses to which CUSTOMER intends to put them.

APPENDIX

Information and material provided by CUSTOMER to ENCON was reviewed by an ENCON executive. However, ENCON does not accept the responsibility for accuracy or verification of CUSTOMER's information or the suitability of CUSTOMER materials. Materials supplied by CUSTOMER were tested as received and were not evaluated for code or insurance compliance. CUSTOMER is expected to review the ENCON drawings, tables, test results and other information provided by ENCON to CUSTOMER critically so as to assure CUSTOMER that these presentations, formulas, drawings and other information are accurate and meaningful for the purpose intended.

No other warranties or guarantees shall be issued, implied, delivered or otherwise construed to be issued, implied or delivered.

ENCON® TECHNOLOGY, INC., 2015